888 research outputs found

    CMEs from AR 10365: Morphology and Physical Parameters of the Ejections and of the Associated Current Sheet

    Get PDF
    We study the evolution and physical parameters of three consecutive coronal mass ejections (CMEs) that occurred at the west limb of the Sun on 2003 June 2 at 00:30, 08:54, 16:08 UT, respectively. The Large Angle and Spectrometric Coronagraph Experiment (LASCO) CME catalog shows that the CMEs entered the C2 field of view with position angles within a 5° interval. This suggests a common origin for the ejections, to be identified with the magnetic system associated with the active region that lies below the CMEs. The close proximity in time and source location of the events prompted us to analyze LASCO white light data and Ultraviolet Coronagraph Spectrometer (UVCS) spectra with the aim of identifying similarities and differences among the three CMEs. It turns out that two of them display the typical three-part structure, while no conclusion can be drawn about the morphology of the third ejection. The CMEs plasma is "cool," i.e., electron temperatures in the CMEs front are of the order of 2 × 105 K, with no significant variation between different events. However, ejection speeds vary by a factor of ~1.5 between consecutive events and electron densities (more precisely emission measures) by a factor of ~6 between the first CME and the second and third CMEs. In the aftermath of all events, we found evidence of current sheets (CSs) both in LASCO and UVCS. We give here the CS physical parameters (electron temperature, density, and kinetic temperature) and follow, in one of the events, their temporal evolution over a 6 hr time interval. A discussion of our results, in the framework of previous findings, concludes the paper

    Making ERP research more transparent: Guidelines for preregistration

    Get PDF
    A combination of confirmation bias, hindsight bias, and pressure to publish may prompt the (unconscious) exploration of various methodological options and reporting only the ones that lead to a (statistically) significant outcome. This undisclosed analytic flexibility is particularly relevant in EEG research, where a myriad of preprocessing and analysis pipelines can be used to extract information from complex multidimensional data. One solution to limit confirmation and hindsight bias by disclosing analytic choices is preregistration: researchers write a time-stamped, publicly accessible research plan with hypotheses, data collection plan, and the intended preprocessing and statistical analyses before the start of a research project. In this manuscript, we present an overview of the problems associated with undisclosed analytic flexibility, discuss why and how EEG researchers would benefit from adopting preregistration, provide guidelines and examples on how to preregister data preprocessing and analysis steps in typical ERP studies, and conclude by discussing possibilities and limitations of this open science practice

    On the determination of post-Newtonian parameters with BepiColombo radio science experiment

    Get PDF
    One of the main goals of the Mercury Orbiter Radio science Experiment (MORE), onboard the ESA-JAXA BepiColombo mission to Mercury, is to perform a test of gravitational theories by means of high precision radio-observables, constraining several Post-Newtonian (PN) parameters. This will be performed in two steps: (i) with a superior solar conjunction experiment during the cruise phase of the mission; (ii) by reconstructing the orbit of Mercury around the Sun once the spacecraft will be arrived at Mercury. In this work we present the results of numerical simulations of the MORE relativity experiment, carried out in a realistic scenario, showing how the experiment can improve over current estimates

    UK adaptive radiotherapy practices for head and neck cancer patients

    Get PDF
    Objective: To provide evidence on the extent and manner in which adaptive practices have been employed in the UK and identify the main barriers for the clinical implementation of adaptive radiotherapy (ART) in head and neck (HN) cancer cases. Methods: In December 2019, a Supplementary Material 1, of 23 questions, was sent to all UK radiotherapy centres (67). This covered general information to current ART practices and perceived barriers to implementation. Results: 31 centres responded (46%). 56% responding centres employed ART for between 10 and 20 patients/annum. 96% of respondents were using CBCT either alone or with other modalities for assessing "weight loss" and "shell gap," which were the main reasons for ART. Adaptation usually occurs at week three or four during the radiotherapy treatment. 25 responding centres used an online image-guided radiotherapy (IGRT) approach and 20 used an offline ad hoc ART approach, either with or without protocol level. Nearly 70% of respondents required 2 to 3 days to create an adaptive plan and 95% used 3-5 mm adaptive planning target volume margins. All centres performed pre-treatment QA. "Limited staff resources" and "lack of clinical relevance" were identified as the two main barriers for ART implementation. Conclusion: There is no consensus in adaptive practice for HN cancer patients across the UK. For those centres not employing ART, similar clinical implementation barriers were identified. Advances in knowledge: An insight into contemporary UK practices of ART for HN cancer patients indicating national guidance for ART implementation for HN cancer patients may be required

    A Test of Gravitational Theories Including Torsion with the BepiColombo Radio Science Experiment

    Get PDF
    Within the framework of the relativity experiment of the ESA/JAXA BepiColombo mission to Mercury, which was launched at the end of 2018, we describe how a test of alternative theories of gravity, including torsion can be set up. Following March et al. (2011), the effects of a non-vanishing spacetime torsion have been parameterized by three torsion parameters, t(1), t(2), and t(3). These parameters can be estimated within a global least squares fit, together with a number of parameters of interest, such as post-Newtonian parameters gamma and beta, and the orbits of Mercury and the Earth. The simulations have been performed by means of the ORBIT14 orbit determination software, which was developed by the Celestial Mechanics Group of the University of Pisa for the analysis of the BepiColombo radio science experiment. We claim that the torsion parameters can be determined by means of the relativity experiment of BepiColombo at the level of some parts in 10(-4), which is a significant result for constraining gravitational theories that allow spacetime torsion

    Novel anticancer and treatment sensitizing compounds against pancreatic cancer

    Get PDF
    The isolation of chemical compounds from natural origins for medical application has played an important role in modern medicine with a range of novel treatments having emerged from various natural forms over the past decades. Natural compounds have been exploited for their antioxidant, antimicrobial and antitumor capabilities. Specifically, 60% of today’s anticancer drugs originate from natural sources. Moreover, the combination of synthetic and natural treatments has shown applications for (i) reduced side effects, (ii) treatment sensitization and (iii) reduction in treatment resistance. This review aims to collate novel and natural compounds that are being explored for their preclinical anticancer, chemosensitizing and radiosensitizing effects on Pancreatic Ductal Adenocarcinoma (PDAC), which is a lethal disease with current treatments being inefficient and causing serve side effects. Two key points are highlighted by this work: (i) the availability of a range of natural compounds for potentially new therapeutic approaches for PDAC, (ii) potential synergetic impact of natural compounds with advanced chemo-and radio-therapeutic modalities for PDAC

    On the Evaluation of a Novel Hypoxic 3D Pancreatic Cancer Model as a Tool for Radiotherapy Treatment Screening

    Get PDF
    Tissue engineering is evolving to mimic intricate ecosystems of tumour microenvironments (TME) to more readily map realistic in vivo niches of cancerous tissues. Such advanced cancer tissue models enable more accurate preclinical assessment of treatment strategies. Pancreatic cancer is a dangerous disease with high treatment resistance that is directly associated with a highly complex TME. More specifically, the pancreatic cancer TME includes (i) complex structure and complex extracellular matrix (ECM) protein composition; (ii) diverse cell populations (e.g., stellate cells), cancer associated fibroblasts, endothelial cells, which interact with the cancer cells and promote resistance to treatment and metastasis; (iii) accumulation of high amounts of (ECM), which leads to the creation of a fibrotic/desmoplastic reaction around the tumour; and (iv) heterogeneous environmental gradients such as hypoxia, which result from vessel collapse and stiffness increase in the fibrotic/desmoplastic area of the TME. These unique hallmarks are not effectively recapitulated in traditional preclinical research despite radiotherapeutic resistance being largely connected to them. Herein, we investigate, for the first time, the impact of in vitro hypoxia (5% O2) on the radiotherapy treatment response of pancreatic cancer cells (PANC-1) in a novel polymer (polyurethane) based highly macroporous scaffold that was surface modified with proteins (fibronectin) for ECM mimicry. More specifically, PANC-1 cells were seeded in fibronectin coated macroporous scaffolds and were cultured for four weeks in in vitro normoxia (21% O2), followed by a two day exposure to either in vitro hypoxia (5% O2) or maintenance in in vitro normoxia. Thereafter, in situ post-radiation monitoring (one day, three days, seven days post-irradiation) of the 3D cell cultures took place via quantification of (i) live/dead and apoptotic profiles and (ii) ECM (collagen-I) and HIF-1a secretion by the cancer cells. Our results showed increased post-radiation viability, reduced apoptosis, and increased collagen-I and HIF-1a secretion in in vitro hypoxia compared to normoxic cultures, revealing hypoxia-induced radioprotection. Overall, this study employed a low cost, animal free model enabling (i) the possibility of long-term in vitro hypoxic 3D cell culture for pancreatic cancer, and (ii) in vitro hypoxia associated PDAC radio-protection development. Our novel platform for radiation treatment screening can be used for long-term in vitro post-treatment observations as well as for fractionated radiotherapy treatment
    • …
    corecore